Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.532
Filtrar
1.
PLoS One ; 19(4): e0301390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558102

RESUMO

How to evaluate the resilience level and change trend of supply chain is an important research direction in current supply chain management practice. This paper proposes a new method of supply chain resilience assessment based on hesitant fuzzy linguistic term set (HFLTS) and matter element extension theory. Firstly, based on the research status quo at home and abroad, a low-carbon enterprise supply chain resilience assessment index system is established, which includes six first-level indicators and corresponding 21 second-level indicators of product supply resilience, resource resilience, partner resilience, information response resilience, financial resilience and knowledge resilience. Secondly, HFLTS was used to collect expert opinions and Ordered Weighted Arithmetic (OWA) to calculate the expert composite language, by which the fuzzy evaluation matrix of supply chain resilience assessment indicators was obtained. Once again, the resilience indicator weights are determined based on a game-theoretic portfolio assignment method combining the best-worst method (BWM) and the CRITIC method. Finally, the nearness degree function is combined with the extension comprehensive evaluation method to improve the matter element extension model, and the supply chain resilience assessment model of low-carbon enterprises based on the game theory combination assignment-improved matter element extension is established. Taking X low-carbon enterprise as an example, the evaluation results show that the supply chain resilience level of this enterprise is II, and the eigenvalue of the grade variable is 2.69, and the supply chain resilience is shifting to III, and the supply chain resilience is shifting to III, which indicates that the supply chain resilience of this enterprise is being enhanced. Therefore, the improved matter element extension not only ensures the accuracy of the evaluation results, but also has higher prediction accuracy.


Assuntos
Lógica Fuzzy , Resiliência Psicológica , Linguística
2.
Int J Med Inform ; 186: 105442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564960

RESUMO

BACKGROUND: The nature of activities practiced in healthcare organizations makes risk management the most crucial issue for decision-makers, especially in developing countries. New technologies provide effective solutions to support engineers in managing risks. PURPOSE: This study aims to develop a Decision Support System (DSS) adapted to the healthcare constraints of developing countries that enables the provision of decisions about risk tolerance classes and prioritizations of risk treatment. METHODS: Failure Modes and Effects Analysis (FMEA) is a popular method for risk assessment and quality improvement. Fuzzy logic theory is combined with this method to provide a robust tool for risk evaluation. The fuzzy FMEA provides fuzzy Risk Priority Number (RPN) values. The artificial neural network is a powerful algorithm used in this study to classify identified risk tolerances. The risk treatment process is taken into consideration in this study by improving FMEA. A new factor is added to evaluate the feasibility of correcting the intolerable risks, named the control factor, to prioritize these risks and start with the easiest. The new factor is combined with the fuzzy RPN to obtain intolerable risk prioritization. This prioritization is classified using the support vector machine. FINDINGS: Results prove that our DSS is effective according to these reasons: (1) The fuzzy-FMEA surmounts classical FMEA drawbacks. (2) The accuracy of the risk tolerance classification is higher than 98%. (3) The second fuzzy inference system developed (the control factor for intolerable risks with the fuzzy RPN) is useful because of the imprecise situation. (4) The accuracy of the fuzzy-priority results is 74% (mean of testing and training data). CONCLUSIONS: Despite the advantages, our DSS also has limitations: There is a need to generalize this support to other healthcare departments rather than one case study (the sterilization unit) in order to confirm its applicability and efficiency in developing countries.


Assuntos
Gestão de Riscos , Máquina de Vetores de Suporte , Humanos , Medição de Risco , Redes Neurais de Computação , Atenção à Saúde , Lógica Fuzzy
3.
Environ Monit Assess ; 196(4): 405, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561557

RESUMO

The development of deep-sea floating offshore wind power (FOWP) is the key to fully utilizing water resources to enhance wind resources in the years ahead, and then the project is still in its initial stage, and identifying risks is a crucial step before promoting a significant undertaking. This paper proposes a framework for identifying risks in deep-sea FOWP projects. First, this paper identifies 16 risk criteria and divides them into 5 groups to establish a criteria system. Second, hesitant fuzzy linguistic term set (HFLTS) and triangular fuzzy number (TFN) are utilized to gather and describe the criterion data to ensure the robustness and completeness of the criterion data. Third, extending the method for removal effects of criteria (MEREC) to the HFLTS environment through the conversion of TFNs, under the influence of subjective preference and objective fairness, a weighting method combining analytic network process (ANP) and MEREC is utilized to calculate criteria weights, and the trust relationship and consistency between experts are used to calculate the expert weights to avoid the subjective weighting given by experts arbitrariness. Fourth, the study's findings indicated that the overall risk level of the deep-sea FOWP projects is "medium." Fifth, sensitivity and comparative analyses were conducted to test the reliability of the assessment outcomes. lastly, this research proposes risk management measures for the deep-sea FOWP project's establishment from economic, policy, technology, environment, and management aspects.


Assuntos
Lógica Fuzzy , Vento , Confiança , Reprodutibilidade dos Testes , Monitoramento Ambiental , Medição de Risco , Linguística
4.
PLoS One ; 19(4): e0300317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574096

RESUMO

A learning management system (LMS) is a web-based application or software platform computed to facilitate the development, tracking, management, reporting, and delivery of education and training programs. Many valuable and dominant factors are working behind the Learning Management System (LMS), but no one can find which factor is most important and valuable for LMS during COVID-19 among the following five alternatives, called Improved Accessibility, Blended Learning, Collaboration and Communications, Assessment and Evaluation, and Administrative Efficiency. For this, first, we derive the techniques of bipolar complex hesitant fuzzy (BCHF) sets, and then we evaluate some flexible operational laws, called Algebraic operational laws and Aczel-Alsina operational laws. Secondly, using the above techniques, we elaborate the technique of BCHF Aczel-Alsina power averaging (BCHFAAPA), BCHF Aczel-Alsina power weighted averaging (BCHFAAPWA), BCHF Aczel-Alsina power geometric (BCHFAAPG), and BCHF Aczel-Alsina power weighted geometric (BCHFAAPWG) operators. Some basic properties are also investigated for each proposed operator. Further, to evaluate the problem concerning LMS, we compute the multi-attribute decision-making (MADM) techniques for invented operators. Finally, we select some prevailing operators and try to compare their ranking results with our proposed results to enhance the worth and capability of the invented theory.


Assuntos
Tomada de Decisões , Lógica Fuzzy , Algoritmos , Aprendizagem , China
5.
PLoS One ; 19(4): e0298948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578797

RESUMO

Currently, there is increasing concern about the safety and leakage of process industries. Therefore, the present study aims to prioritize control measures before and after the leakage scenario by using the Hendershot theory and MCDM techniques. In this study, two proactive and reactive layers were selected before and after leakage of tanks, respectively. Then, criteria and alternatives were selected to perform fuzzy TOPSIS (FTOPSIS) and find the best alternative based on the literature review and Hendershot approach. The linear model of the fuzzy Best-Worst method (FBWM) was constructed and resolved using Lingo 17 software. Subsequently, criteria were assigned weights based on thorough calculations of the inconsistency rate. The weight of study experts was equal to 0.25. The results of FBWM showed that the reliability index with a weight of 0.3727 was ranked first and the inconsistency rate ([Formula: see text]) was calculated to be equal to 0.040. Inherent Safety Design (ISD) (0.899) and passive safety (0.767) also ranked first before and after tank leaks, respectively. Using the FBWM method leads to fewer pairwise comparisons and at the same time more stability. Although ISD and passive strategies are more valid and strict, elements of all strategies are necessary for a comprehensive process safety management program.


Assuntos
Lógica Fuzzy , Indústrias , Humanos , Reprodutibilidade dos Testes , Confusão
6.
PLoS One ; 19(4): e0301470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578810

RESUMO

In wireless sensor networks, the implementation of clustering and routing protocols has been crucial in prolonging the network's operational duration by conserving energy. However, the challenge persists in efficiently optimizing energy usage to maximize the network's longevity. This paper presents CHHFO, a new protocol that combines a fuzzy logic system with the collaborative Harris Hawks optimization algorithm to enhance the lifetime of networks. The fuzzy logic system utilizes descriptors like remaining energy, distance from the base station, and the number of neighboring nodes to designate each cluster head and establish optimal clusters, thereby alleviating potential hot spots. Moreover, the Collaborative Harris Hawks Optimization algorithm employs an inventive coding mechanism to choose the optimal relay cluster head for data transmission. According to the results, the network throughput, HHOCFR is 8.76%, 11.73%, 8.64% higher than HHO-UCRA, IHHO-F, and EFCR. In addition, he energy consumption of HHOCFR is lower than HHO-UCRA, IHHO-F, and EFCR by 0.88%, 39.79%, 34.25%, respectively.


Assuntos
Falconiformes , Lógica Fuzzy , Animais , Tecnologia sem Fio , Redes de Comunicação de Computadores , Algoritmos
7.
Ying Yong Sheng Tai Xue Bao ; 35(2): 354-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523092

RESUMO

Forest fires have a significant impact on human life, property safety, and ecological environment. Deve-loping high-quality forest fire risk maps is beneficial for preventing forest fires, guiding resource allocation for firefighting, assisting in fire suppression efforts, and supporting decision-making. With a multi-criteria decision analysis (MCDA) method based on geographic information systems (GIS) and literature review, we assessed the main factors influencing the occurrences of forest fires in Youxi County, Fujian Province. We analyzed the importance of each fire risk factor using the analytic network process (ANP) and assigned weights, and evaluated the sub-standard weights using fuzzy logic assessment. Using ArcGIS aggregation functions, we generated a forest fire risk map and validated it with satellite fire points. The results showed that the areas classified as level 4 or higher fire risk accounted for a considerable proportion in Youxi County, and that the central and northern regions were at higher risk. The overall fire risk situation in the county was severe. The fuzzy ANP model demonstrated a high accuracy of 85.8%. The introduction of this novel MCDA method could effectively improve the accuracy of forest fire risk mapping at a small scale, providing a basis for early fire warning and the planning and allocation of firefighting resources.


Assuntos
Lógica Fuzzy , Incêndios Florestais , Humanos , Incêndios/prevenção & controle , Florestas , Sistemas de Informação Geográfica , Árvores , Incêndios Florestais/estatística & dados numéricos
8.
Accid Anal Prev ; 199: 107529, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442630

RESUMO

Surrogate Safety Measures (SSM) are extensively applied in safety analysis and design of active vehicle safety systems. However, most existing SSM focus only on the one-dimensional interactions along the vehicle traveling direction and cannot handle the crash risks associated with vehicle lateral movements such as sideswipes and angle crashes. To bridge this important knowledge gap, this study proposes a two-dimensional SSM defined based on Fuzzy Logic and the Inverse Time to Collision (FL-iTTC), which accounts for neighboring vehicles' lateral kinematics and the uncertainty of their movements. The proposed FL-iTTC are proven to be more accurate than traditional SSM in identifying typical risky scenarios, including harsh decelerations, sudden lane-changes, cut-ins and pre-crashes that are extracted from the NGSIM dataset. Additionally, other naturalistic driving scenarios are extracted from the NGSIM dataset and are used to evaluate the effectiveness of different SSM in quantifying crash risks. FL-iTTC is compared with other two-dimensional SSM including Anticipated Collision Time (ACT) and Probabilistic Driving Risk Field (PDRF) based on the confusion matrix and the receiver operating characteristic (ROC) curve. The Area under the ROC Curve (AUC) is 0.923 for FL-iTTC, while only 0.891 for ACT and 0.907 for PDRF, which indicates FL-iTTC outperforms other two-dimensional SSM in risk assessment. Overall, the proposed FL-iTTC greatly complements existing SSM and provides a reliable and useful tool to evaluate various crash risks associated with vehicle lateral movements such as cut-in and sideswipe.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Humanos , Acidentes de Trânsito/prevenção & controle , Lógica Fuzzy , Medição de Risco , Viagem
9.
PLoS One ; 19(3): e0297295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489317

RESUMO

Stochastic and robust optimization approaches often result in sub-optimal solutions for the uncertain p-hub median problem when continuous design parameters are discretized to form different environmental scenarios. To solve this problem, this paper proposes a triangular fuzzy number model for the Non-Strict Uncapacitated Multi-Allocation p-hub Median Problem. To enhance the quality and the speed of optimization, a novel optimization approach, combining the triangular fuzzy number evaluation index with the Genetic-Tabu Search algorithm, is proposed. During the iterations of the Genetic-Tabu Search algorithm for finding the optimal solution, the fitness of fuzzy hub schemes is calculated by considering the relative positional relationships of triangular fuzzy number membership functions. This approach directly addresses the triangular fuzzy number model and ensures the integrity of information in the p-hub problem as much as possible. It is verified by the classic Civil Aeronautics Board and several self-constructed data sets. The results indicate that, compared to the traditional Genetic Algorithm and Tabu Search algorithm, the Genetic-Tabu Search algorithm reduces average computation time by 49.05% and 40.93%, respectively. Compared to traditional random, robust, and real-number-based optimization approaches, the proposed optimization approach reduces the total cost in uncertain environments by 1.47%, 2.80%, and 8.85%, respectively.


Assuntos
Algoritmos , Lógica Fuzzy , Incerteza
10.
PLoS One ; 19(3): e0296655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517840

RESUMO

The Internet of Things (IoT) has become one of the most popular technologies in recent years. Advances in computing capabilities, hardware accessibility, and wireless connectivity make possible communication between people, processes, and devices for all kinds of applications and industries. However, the deployment of this technology is confined almost entirely to tech companies, leaving end users with only access to specific functionalities. This paper presents a framework that allows users with no technical knowledge to build their own IoT applications according to their needs. To this end, a framework consisting of two building blocks is presented. A friendly interface block lets users tell the system what to do using simple operating rules such as "if the temperature is cold, turn on the heater." On the other hand, a fuzzy logic reasoner block built by experts translates the ambiguity of human language to specific actions to the actuators, such as "call the police." The proposed system can also detect and inform the user if the inserted rules have inconsistencies in real time. Moreover, a formal model is introduced, based on fuzzy description logic, for the consistency of IoT systems. Finally, this paper presents various experiments using a fuzzy logic reasoner to show the viability of the proposed framework using a smart-home IoT security system as an example.


Assuntos
Utensílios Domésticos , Internet das Coisas , Humanos , Lógica Fuzzy , Temperatura Baixa , Comunicação
11.
Environ Sci Pollut Res Int ; 31(17): 26217-26230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494570

RESUMO

The allocation of water in areas which face shortage of water especially during hot dry seasons is of utmost importance. This is normally affected by various factors, the management of which takes a lot of time and energy with efforts falling infertile in many cases. In recent years, scholars have been trying to investigate the applicability of fuzzy interval optimization models in attempts to address the problem. However, a review of literature indicates that in applicating such models, the dynamic nature of the problem has mostly been overlooked. Therefore, the aim of the present study is to provide a fuzzy interval dynamic optimization model for the allocation of surface and groundwater resources under water shortage conditions in West Azerbaijan Province, Iran. In so doing, an optimization model for the allocation of water resources was designed and then was validated by removing surface and groundwater resources and analyzing its performance once these resources were removed. The model was then applied in the case study of ten regions in West Azerbaijan Province and the optimal allocation values and water supply percentages were determined for each region over 12 periods. The results showed that the increase in total demand has the greatest effect while the increase in groundwater industrial demand has the least effect on the supply reduction rate. The increase of uncertainty up to 50% in the fuzzy interval programming would lead to subsequent increases in groundwater extraction by up to 19% and decreases in water supply by up to 10%. The increase of uncertainty in the fuzzy interval dynamic model would cause an increase in groundwater extraction to slightly more than 10% and a decrease in water supply to 0.05%. Therefore, implementing the fuzzy interval dynamic programming model would result in better gains and would reduce uncertainty effects. This would imply that using a mathematical model can result in better gains and can provide better footings for more informed decisions by authorities for managing water resources.


Assuntos
Lógica Fuzzy , Água Subterrânea , Água , Irã (Geográfico) , Azerbaijão , Modelos Teóricos , Recursos Hídricos , Abastecimento de Água , Alocação de Recursos
12.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400205

RESUMO

The utilization of robotic systems in upper limb rehabilitation has shown promising results in aiding individuals with motor impairments. This research introduces an innovative approach to enhance the efficiency and adaptability of upper limb exoskeleton robot-assisted rehabilitation through the development of an optimized stimulation control system (OSCS). The proposed OSCS integrates a fuzzy logic-based pain detection approach designed to accurately assess and respond to the patient's pain threshold during rehabilitation sessions. By employing fuzzy logic algorithms, the system dynamically adjusts the stimulation levels and control parameters of the exoskeleton, ensuring personalized and optimized rehabilitation protocols. This research conducts comprehensive evaluations, including simulation studies and clinical trials, to validate the OSCS's efficacy in improving rehabilitation outcomes while prioritizing patient comfort and safety. The findings demonstrate the potential of the OSCS to revolutionize upper limb exoskeleton-assisted rehabilitation by offering a customizable and adaptive framework tailored to individual patient needs, thereby advancing the field of robotic-assisted rehabilitation.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Lógica Fuzzy , Extremidade Superior/fisiologia , Dor
13.
J Environ Manage ; 353: 120105, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38325282

RESUMO

Food waste has received wide attention due to its hazardous environmental effects, such as soil, water, and air pollution. Evaluating food waste treatment techniques is imperative to realize environmental sustainability. This study proposes an integrated framework, the complex q-rung orthopair fuzzy-generalized TODIM (an acronym in Portuguese for interactive and multi-criteria decision-making) method with weighted power geometric operator, to assess the appropriate technique for food waste. The assessment of food waste treatment techniques can be divided into three phases: information processing, information fusion, and ranking alternatives. Firstly, the complex q-rung orthopair fuzzy set flexibly describes the information with periodic characteristics in the processing process with various parameters q. Then, the weighted power geometric operator is employed to calculate the weight of the expert and form the group evaluation matrix, in which the weight of each input rating depends upon the other input ratings. It can simulate the mutual support, multiplicative preferences, and interrelationship of experts. Next, the generalized TODIM method is employed to rank the food waste treatment techniques, considering experts' psychological characteristics and bounded behavior. Subsequently, a real-world application case examines the practicability of the proposed framework. Furthermore, the sensitivity analysis verifies the validity and stability of the presented framework. The comparative study highlights the effectiveness of this framework using the existing frameworks. According to the result, Anaerobic digestion (0.0043) has the highest priority among the considered alternatives, while Incineration (-0.0009) has the lowest.


Assuntos
Poluição do Ar , Eliminação de Resíduos , Alimentos , 60659 , Clima , Lógica Fuzzy
14.
PLoS One ; 19(2): e0293112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319925

RESUMO

Cardiovascular diseases (CVD) also known as heart disease are now the leading cause of death in the world. This paper presents research for the design and creation of a fuzzy logic-based expert system for the prognosis and diagnosis of heart disease that is precise, economical, and effective. This system entails a fuzzification module, knowledge base, inference engine, and defuzzification module where seven attributes such as chest pain type, HbA1c (Haemoglobin A1c), HDL (high-density lipoprotein), LDL (low-density lipoprotein), heart rate, age, and blood pressure are considered as input to the system. With the aid of the available literature and extensive consultation with medical experts in this field, an enriched knowledge database has been created with a sufficient number of IF-THEN rules for the diagnosis of heart disease. The inference engine then activates the appropriate IF-THEN rule from the knowledge base and determines the output value using the appropriate defuzzification technique after the fuzzification module fuzzifies each input depending on the appropriate membership function. Moreover, the fusion of web-based technology makes it suitable and cost-effective for the prognosis of heart disease for a patient and then he can take his decision for addressing the problem based on the status of his heart. On the other hand, it can also assist a medical practitioner to reach a more accurate conclusion regarding the treatment of heart disease for a patient. The Mamdani inference method has been used to evaluate the results. The system is tested with the Cleveland dataset and cross-checked with the in-field dataset. Compared with the other existing expert systems, the proposed method performs 98.08% accurately and can make accurate decisions for diagnosing heart diseases.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Masculino , Humanos , Lógica Fuzzy , Sistemas Especialistas , Coração
15.
Med Biol Eng Comput ; 62(5): 1503-1518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300436

RESUMO

In this paper, we propose a new robust and fast learning technique by investigating the effect of integration of quaternion and interval type II fuzzy logic along with non-iterative, parameter free deterministic learning machine (DLM) pertaining to face recognition problem. The traditional learning techniques did not account colour information and degree of pixel wise association of individual pixel of a colour face image in their network. Therefore, this paper presents a new technique named quaternion interval type II based deterministic learning machine (QIntTyII-DLM), which considers the interrelationship between three colour channels viz. red, green, and blue (RGB) by representing each colour pixel of a colour image in quaternion number sequence. Here, quaternion vector representation of a colour face image is fuzzified using interval type II fuzzy logic. This reduces the redundancy between pixels of different colour channels and also transforms colour channels of the image to orthogonal colour space. Thereafter, classification is performed using DLM. Experiments performed (on four standard datasets AR, Georgia Tech, Indian, face (female) and faces 94 (male) face datasets) and comparison done with other existing techniques proves that the proposed technique gives better results in terms of percentage error rate (reduces approximately 10-12%) and computational speed.


Assuntos
Reconhecimento Facial , Lógica Fuzzy , Feminino , Masculino , Humanos , Cor , Aprendizagem
16.
Environ Sci Pollut Res Int ; 31(15): 22900-22916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418789

RESUMO

Lakes, as the main sources of surface water, are of great environmental and ecological importance and largely affect the climatic conditions of the surrounding areas. Lake area fluctuations are very effective on plant and animal biodiversity in the areas covered. Hence, accurate and reliable forecasts of ​lake area might provide the awareness of water and climate resources and the survival of various species dependent on area fluctuations. Using machine learning methods, the current study numerically predicted area fluctuations of ​China's largest lake, Qinghai, over 1 to 12 months ahead of lead time. To this end, Moderate Resolution Imaging Spectroradiometer (MODIS) sensor images were used to monitor the monthly changes in the area of ​the lake from 2000 to 2021. Predictive inputs included the MODIS-derived lake area time latency specified by the autocorrelation function. The data was divided into two periods of the train (initial 75%) and test (final 25%), and the input combinations were arranged so that the model in the test period could be used to predict 12 scenarios, including forecast horizons for the next 1 to 12 months. The adaptive neuro-fuzzy inference system (ANFIS) was utilized as a predictive model. The firefly algorithm (FA) was also used to optimize ANFIS and improve its accuracy, as a hybrid model ANFIS-FA. Based on evaluation criteria such as root mean square error (RMSE) (477-594 km2) and R2 (88-92%), the results confirmed the acceptable accuracy of the models in all forecast horizons, even long-term horizons (10 months, 11 months, and 12 months). Based on the normalized RMSE criterion (0.095-0.125), the models' performance was reported to be appropriate. Furthermore, the firefly algorithm improved the prediction accuracy of the ANFIS model by an average of 16.9%. In the inter-month survey, the models had fewer forecast errors in the dry months (February-March) than in the wet months (October-November). Using the current method can provide remarkable information about the future state of lakes, which is very important for managers and planners of water resources, environment, and natural ecosystems. According to the results, the current approach is satisfactory in predicting MODIS-derived fluctuations of Qinghai Lake area and has research value for other lakes.


Assuntos
Ecossistema , Imagens de Satélites , Algoritmos , Recursos Hídricos , Água , Lógica Fuzzy
17.
Environ Sci Pollut Res Int ; 31(13): 19085-19104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376778

RESUMO

Biogas plant operators often face huge challenges in the monitoring, controlling and optimisation of the anaerobic digestion (AD) process, as it is very sensitive to surrounding changes, which often leads to process failure and adversely affects biogas production. Conventional implemented methods and mechanistic models are impractical and find it difficult to model the nonlinear and intricate interactions of the AD process. Thus, the development of machine learning (ML) algorithms has attracted considerable interest in the areas of process optimization, real-time monitoring, perturbation detection and parameter prediction. This paper provides a comprehensive and up-to-date overview of different machine learning algorithms, including artificial neural network (ANN), fuzzy logic (FL), adaptive network-based fuzzy inference system (ANFIS), support vector machine (SVM), genetic algorithm (GA) and particle swarm optimization (PSO) in terms of working mechanism, structure, advantages and disadvantages, as well as their prediction performances in modelling the biogas production. A few recent case studies of their applications and limitations are also critically reviewed and compared, providing useful information and recommendation in the selection and application of different ML algorithms. This review shows that the prediction efficiency of different ML algorithms is greatly impacted by variations in the reactor configurations, operating conditions, influent characteristics, selection of input parameters and network architectures. It is recommended to incorporate mixed liquor volatile suspended solids (MLVSS) concentration of the anaerobic digester (ranging from 16,500 to 46,700 mg/L) as one of the input parameters to improve the prediction efficiency of ML modelling. This review also shows that the combination of different ML algorithms (i.e. hybrid GA-ANN model) could yield better accuracy with higher R2 (0.9986) than conventional algorithms and could improve the optimization model of AD. Besides, future works could be focused on the incorporation of an integrated digital twin system coupled with ML techniques into the existing Supervisory Control and Data Acquisition (SCADA) system of any biogas plant to detect any operational abnormalities and prevent digester upsets.


Assuntos
Biocombustíveis , Redes Neurais de Computação , Anaerobiose , Algoritmos , Lógica Fuzzy , Aprendizado de Máquina
18.
Biosystems ; 237: 105161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387806

RESUMO

The white potato worm (Premnotrypes Vorax (Hustache)) is one of the pests that causes the greatest damage to the potato crop and the greatest economic losses to the grower; therefore, knowing its life cycle and estimating its intrinsic growth rate is crucial for selecting an appropriate chemical control method, in order to reduce the environmental impact and ensure a profitable production suitable for consumption. In this article, we present a fuzzy Malthusian model describing the evolution of the white potato worm in the crop, considering that the intrinsic growth rate and the reported initial data on the problem are of fuzzy nature. The main contributions and novelty of this paper are summarized in the following two aspects: first, the estimation of the intrinsic growth rate of the white potato worm, in function of the temperature, by using a Takagi-Sugeno-Kang type fuzzy rule-based model; and second, since in practice the initial white potato worm population in a crop is subjective, imprecise and vague, knowing the intrinsic growth rate, we propose and solve a fuzzy initial value problem to determine the evolution in time of the white potato worm population. In conclusion, given a weekly average temperature, it is possible to know the white potato worm population per unit area oscillating in an interval whose length depends on the degree of inaccuracy of the initial population and the intrinsic growth rate. This study can be relevant for grower decision making in terms of the type and frequency of pest control on his crop.


Assuntos
Algoritmos , Lógica Fuzzy
19.
Sci Rep ; 14(1): 4275, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383597

RESUMO

The challenge of making flexible, standard, and early medical diagnoses is significant. However, some limitations are not fully overcome. First, the diagnosis rules established by medical experts or learned from a trained dataset prove static and too general. It leads to decisions that lack adaptive flexibility when finding new circumstances. Secondly, medical terminological interoperability is highly critical. It increases realism and medical progress and avoids isolated systems and the difficulty of data exchange, analysis, and interpretation. Third, criteria for diagnosis are often heterogeneous and changeable. It includes symptoms, patient history, demographic, treatment, genetics, biochemistry, and imaging. Symptoms represent a high-impact indicator for early detection. It is important that we deal with these symptoms differently, which have a great relationship with semantics, vary widely, and have linguistic information. This negatively affects early diagnosis decision-making. Depending on the circumstances, the diagnosis is made solo on imaging and some medical tests. In this case, although the accuracy of the diagnosis is very high, can these decisions be considered an early diagnosis or prove the condition is deteriorating? Our contribution in this paper is to present a real medical diagnostic system based on semantics, fuzzy, and dynamic decision rules. We attempt to integrate ontology semantics reasoning and fuzzy inference. It promotes fuzzy reasoning and handles knowledge representation problems. In complications and symptoms, ontological semantic reasoning improves the process of evaluating rules in terms of interpretability, dynamism, and intelligence. A real-world case study, ADNI, is presented involving the field of Alzheimer's disease (AD). The proposed system has indicated the possibility of the system to diagnose AD with an accuracy of 97.2%, 95.4%, 94.8%, 93.1%, and 96.3% for AD, LMCI, EMCI, SMC, and CN respectively.


Assuntos
Doença de Alzheimer , Semântica , Humanos , Lógica Fuzzy , Linguística , Resolução de Problemas
20.
Sci Rep ; 14(1): 4963, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424187

RESUMO

The success of screening programs depends to a large extent on the adherence of the target population, so it is therefore of fundamental importance to develop computer simulation models that make it possible to understand the factors that correlate with this adherence, as well as to identify population groups with low adherence to define public health strategies that promote behavioral change. Our aim is to demonstrate that it is possible to simulate screening adherence behavior using computer simulations. Three versions of an agent-based model are presented using different methods to determine the agent's individual decision to adhere to screening: (a) logistic regression; (b) fuzzy logic components and (c) a combination of the previous. All versions were based on real data from 271,867 calls for diabetic retinopathy screening. The results obtained are statistically very close to the real ones, which allows us to conclude that despite having a high degree of abstraction from the real data, the simulations are very valid and useful as a tool to support decisions in health planning, while evaluating multiple scenarios and accounting for emergent behavior.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Simulação por Computador , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Programas de Rastreamento/métodos , Lógica Fuzzy , Modelos Logísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...